Statistical Hypothesis Testing of Failure-Time Data in Time-to-Event (or Survival) Analysis

Picture of Shishir Rao

Shishir Rao

Shishir has a background in Engineering/Statistics. After more than a decade working in the energy industry, he is currently exploring independent consulting in the field of reliability analytics.

Table of Contents

Introduction

The following article is my attempt at applying the concepts I learnt in the chapter on non-parametric hypothesis testing1 to failure time data sets in reliability.

The log rank test discussed in this article deals with testing for difference in failure rates between different groups. The intent is to check whether there is a practical and statistical difference between the failure rates of the different groups. One would want to make such comparisons for various reasons. For example, suppose we have failure data of two components from different vendors and we want to find out which component has a lower failure rate. Another reason could be to check for any differences in failure rates before and after a process improvement change has been implemented, or between components operating on different mine sites or different conditions. These methods would be applicable to all such datasets that are right censored (or left truncated and right censored).

Two datasets2 will be analysed. Each dataset consists of data from at least two groups. All datasets are available on the student companion website of the aforementioned book. They are also publicly available on DataShare, Iowa State University’s open data repository which can be accessed through this link.

Non-parametric methods do not make any assumptions for the distribution of failure times. These methods are normally tried first before moving on to parametric models, which, if the assumptions are met, could lead to more precise conclusions. This blog article discusses the application of the log rank test. Other non-parametric tests like test for trend, stratified tests etc will be discussed in subsequent blogs.

The survival package in R has been used for a lot of the analysis in this article. Additionally, I have also used a few other packages like survminer which helps in plotting survival curves in a much more informative and visually appealing format. I noticed some issues which lead to incorrect results (p-value) in the survminer package, which I discuss in more detail below. It is best to verify your results, whenever possible, either by calculating some results manually or by cross verifying with other methods. For example, the p-value of a log rank test should be more or less the same as the p-value of the score test from a cox proportional hazards model. I have performed this check for one of the datasets below and was able to conclude that the p-value I was getting from the survminer package wasn’t what I was expecting.

The R-markdown file for this article contains all the code used here and is available on this link.

Dataset I: Snubber

This dataset, first given by Nelson (1981)3 contains information on accelerated life tests of two snubber designs for a pop-up toaster. The new design reduces the manufacturing cost, but does it affect the reliability of the component in comparison to the old design? A logrank test can be performed answer this question. We want to test whether the failure rates are different for the two designs. We set up the null and alternate hypothesis as follows.

\[ \begin{aligned} &H_0: h_{old}(t) = h_{new}(t) \quad \text{for all } t \leq \tau, \quad \text{versus} \\ \\ &H_A: h_{old}(t) \, \text{is different to} \, h_{new}(t) \, \text{for some} \, t \leq \tau. \quad \end{aligned} \] Here, \(h(t)\) is the failure rate and \(\tau\) is the largest time at which both groups have at least one observation at risk.

The hypothesis test is conducted by calculating the weighted difference between the actual failures and expected failures under the null hypothesis of no difference in failure rates4. This weighted difference, along with its variance-covariance matrix is used to calculate a chi-squared statistic from which the p-value is calculated. The weights allow us to test for early or late departures between the hazard rates. For the log rank test, the value of the weight is 1, which means equal weightage over the whole range5.

In this article, we only use the log rank weight of 1.

Next, we load the snubber dataset, rename columns so that they don’t include spaces and create a new column for status.

snubber <- read_csv("Data/Snubber.csv")

snubber <- snubber %>%
  dplyr::mutate(Status = case_when(`Censoring Indicator` == "Failure" ~ 1, `Censoring Indicator` == "Censored" ~ 0)) %>% dplyr::rename(Cycles = `Toaster Cycles`)

knitr::kable(snubber, caption = "Table 1. Snubber", align = rep('c', 5), table.envir = 'table*') %>%
 kableExtra::kable_styling("striped", full_width = T, position = "left") %>%
kableExtra::scroll_box(height = "200px")
Table 1. Snubber
Cycles Censoring Indicator Count Design Status
90 Failure 2 Old 1
90 Censored 1 Old 0
190 Censored 1 Old 0
218 Censored 2 Old 0
241 Censored 1 Old 0
268 Failure 1 Old 1
349 Censored 1 Old 0
378 Censored 2 Old 0
410 Failure 2 Old 1
410 Censored 1 Old 0
485 Failure 1 Old 1
508 Failure 1 Old 1
600 Censored 4 Old 0
631 Failure 3 Old 1
635 Failure 1 Old 1
658 Failure 1 Old 1
658 Censored 1 Old 0
731 Failure 1 Old 1
739 Failure 1 Old 1
739 Censored 4 Old 0
790 Failure 1 Old 1
790 Censored 11 Old 0
855 Failure 1 Old 1
980 Failure 2 Old 1
980 Censored 5 Old 0
45 Censored 1 New 0
47 Failure 1 New 1
73 Failure 1 New 1
136 Censored 5 New 0
145 Failure 1 New 1
190 Censored 2 New 0
281 Censored 1 New 0
311 Failure 1 New 1
417 Censored 1 New 0
485 Censored 2 New 0
490 Failure 1 New 1
569 Censored 1 New 0
571 Failure 1 New 1
571 Censored 1 New 0
575 Failure 1 New 1
608 Failure 2 New 1
608 Censored 12 New 0
630 Failure 1 New 1
670 Failure 2 New 1
731 Censored 1 New 0
838 Failure 1 New 1
964 Failure 2 New 1
1164 Censored 7 New 0
1198 Failure 1 New 1
1198 Censored 1 New 0
1300 Censored 3 New 0

The first column indicates the number of toaster cycles to failure or the number of toaster cycles when right censored. The third column is the frequency counts. The fourth column indicates whether the data point is from the new or old design.

In the next step, a Kaplan-Meir survival curve is fit to the two groups.

fit_snubber <- survival::survfit(
  survival::Surv(time = Cycles, event = Status, type = 'right') ~ Design,
  data = snubber,
  weights = Count,
  conf.type = "log",
  conf.int = 0.95
)

ggsurvplot(
  fit_snubber,
  data = snubber,
  risk.table = T,
  conf.int = T
)

Looking at the curves in the plot, there doesn’t seem to be much difference between the two groups. A hypothesis test for difference in hazard rates will formalize our comparison of the two groups.

The survdiff function from the survival package can be used to conduct the log-rank tests. The syntax is as follows:

survival::survdiff(
  survival::Surv(time = Cycles, event = Status, type = 'right') ~ Design,
  data = snubber,
  rho = 0
) ##rho = 0 gives log rank test
## Call:
## survival::survdiff(formula = survival::Surv(time = Cycles, event = Status, 
##     type = "right") ~ Design, data = snubber, rho = 0)
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## Design=New 26       13     13.9    0.0547     0.124
## Design=Old 25       13     12.1    0.0626     0.124
## 
##  Chisq= 0.1  on 1 degrees of freedom, p= 0.7

The p-value is 0.7, which means we do not have sufficient evidence at the 5% significance level to suggest that there is a difference in the hazard rates. But, there is a problem in the result of survdiff shown above! If you notice the syntax for survdiff, it does not have an argument for “Counts”, which is the frequency of the number of events (or number of censored observations). survdiff treats every row as one count, whereas we want frequency of observations to be factored in just like it was done in the survfit function using the “weights = Count” argument. This can also be verified from the numbers under the “Observed” column in the results of survdiff shown above. The column shows that there are 13 failures in the old design as well as the new design whereas the number of failures in the old design is 18 and in the new design is 16, as shown below.

(sum(snubber$Count[which(snubber$Status ==1 & snubber$Design == "Old")]))
## [1] 18
(sum(snubber$Count[which(snubber$Status ==1 & snubber$Design == "New")]))
## [1] 16

Hence, if we want to use survdiff, we need to modify our dataset in such a way that every row counts as only one observation. We do that in the next chunk of code.

count_gt1.index <- which(snubber$Count > 1) #identify rows with count greater than 1.
count_adj <- snubber$Count[count_gt1.index] - 1

snubber.split <- snubber[rep(row.names(snubber)[count_gt1.index],count_adj),]

snubber.new <- rbind(snubber,snubber.split) %>% dplyr::select(!c("Count")) %>% dplyr::arrange(desc(Design))

sum(snubber$Count) == dim(snubber.new)[1] #check whether sum of counts equals number of rows in the new dataset
## [1] TRUE
knitr::kable(snubber.new, caption = "Table 2. Snubber (Modified)", align = rep('c', 4), table.envir = 'table*') %>%
 kableExtra::kable_styling("striped", full_width = T, position = "left") %>%
kableExtra::scroll_box(height = "200px")
## Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
## Use 'xfun::attr2()' instead.
## See help("Deprecated")
## Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
## Use 'xfun::attr2()' instead.
## See help("Deprecated")
Table 2. Snubber (Modified)
Cycles Censoring Indicator Design Status
90 Failure Old 1
90 Censored Old 0
190 Censored Old 0
218 Censored Old 0
241 Censored Old 0
268 Failure Old 1
349 Censored Old 0
378 Censored Old 0
410 Failure Old 1
410 Censored Old 0
485 Failure Old 1
508 Failure Old 1
600 Censored Old 0
631 Failure Old 1
635 Failure Old 1
658 Failure Old 1
658 Censored Old 0
731 Failure Old 1
739 Failure Old 1
739 Censored Old 0
790 Failure Old 1
790 Censored Old 0
855 Failure Old 1
980 Failure Old 1
980 Censored Old 0
90 Failure Old 1
218 Censored Old 0
378 Censored Old 0
410 Failure Old 1
600 Censored Old 0
600 Censored Old 0
600 Censored Old 0
631 Failure Old 1
631 Failure Old 1
739 Censored Old 0
739 Censored Old 0
739 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
790 Censored Old 0
980 Failure Old 1
980 Censored Old 0
980 Censored Old 0
980 Censored Old 0
980 Censored Old 0
45 Censored New 0
47 Failure New 1
73 Failure New 1
136 Censored New 0
145 Failure New 1
190 Censored New 0
281 Censored New 0
311 Failure New 1
417 Censored New 0
485 Censored New 0
490 Failure New 1
569 Censored New 0
571 Failure New 1
571 Censored New 0
575 Failure New 1
608 Failure New 1
608 Censored New 0
630 Failure New 1
670 Failure New 1
731 Censored New 0
838 Failure New 1
964 Failure New 1
1164 Censored New 0
1198 Failure New 1
1198 Censored New 0
1300 Censored New 0
136 Censored New 0
136 Censored New 0
136 Censored New 0
136 Censored New 0
190 Censored New 0
485 Censored New 0
608 Failure New 1
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
608 Censored New 0
670 Failure New 1
964 Failure New 1
1164 Censored New 0
1164 Censored New 0
1164 Censored New 0
1164 Censored New 0
1164 Censored New 0
1164 Censored New 0
1300 Censored New 0
1300 Censored New 0

The modified table now has 106 rows, with one row for each observation. We can now apply the survdiff function from the survival package.

survival::survdiff(
  survival::Surv(time = Cycles, event = Status, type = 'right') ~ Design,
  data = snubber.new,
  rho = 0
) ##rho = 0 gives log rank test
## Call:
## survival::survdiff(formula = survival::Surv(time = Cycles, event = Status, 
##     type = "right") ~ Design, data = snubber.new, rho = 0)
## 
##             N Observed Expected (O-E)^2/E (O-E)^2/V
## Design=New 54       16     17.1    0.0697     0.152
## Design=Old 52       18     16.9    0.0704     0.152
## 
##  Chisq= 0.2  on 1 degrees of freedom, p= 0.7

The “Observed” column above shows the right number of failures. The p-value is still 0.7, which again indicates that we do not have sufficient evidence at the 5% significance level to support the alternate hypothesis of difference in the failure rates of the new and old design.

I also calculated the log rank test statistic and the p-value manually and was able to get a similar result6.

We now plot the Kaplan Meir curves along with the p-value on the plot.

survminer::ggsurvplot(
  fit_snubber,
  pval = 0.7,
  risk.table = T,
  conf.int = T
)

There is another note of caution that is warranted here. The ggsurvplot function from the survminer package which we have used to generate the plot above, also has the ability to conduct tests of 2 or more groups with different weights. The calculated p-value is plotted on the survival curve through additional arguments as shown below.

survminer::ggsurvplot(
  fit_snubber,
  pval = T, #default is weight = 1 for log rank test
  pval.method = T,
  risk.table = T,
  conf.int = T
)

Since the Kaplan-Meir curve model “fit_snubber” is an input to ggsurvplot, one could easily mistake the p-value reported on the plot to be the correct one that takes into account the frequency counts from the “fit_snubber” model object. Unfortunately, this is not the case. ggsurvplot calls the survdiff function by default on the unmodified dataframe in the “fit_snubber” model object, which leads to the incorrect p-value. Hence, if you are planning to use ggsurvplot to plot Kaplan Meir curves, it is recommended that you hardcode the p-value like we did initially after the correct calculations through survdiff, instead of relying on ggsurvplot calculations.

Next, we will look at an example where there is a big change in the p-value before and after we modify the dataframe to make it suitable for applying the survdiff function.

Dataset II: Circuit Packs

This dataset contains life test data from a test conducted to compare failure time distribution of components from two different vendors. It was first reported by Hooper and Amster (1998)7

Just like the previous example, we load the dataset and clean up column names.

circuitPack <- read_csv("Data/CircuitPack05.csv")
## Rows: 41 Columns: 4
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): Censoring Indicator, Vendor Number
## dbl (2): Days, Count
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
circuitPack <- circuitPack %>%
  dplyr::mutate(Status = case_when(`Censoring Indicator` == "Failure" ~ 1, `Censoring Indicator` == "Censored" ~ 0)) %>% 
  dplyr::rename(Vendor = `Vendor Number`)

knitr::kable(circuitPack, caption = "Table 3. Circuit Pack", align = rep('c', 5), table.envir = 'table*') %>%
 kableExtra::kable_styling("striped", full_width = T, position = "left") %>%
kableExtra::scroll_box(height = "200px")
## Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
## Use 'xfun::attr2()' instead.
## See help("Deprecated")
## Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
## Use 'xfun::attr2()' instead.
## See help("Deprecated")
Table 3. Circuit Pack
Days Censoring Indicator Count Vendor Status
1.3 Failure 1 Vendor1 1
1.7 Failure 1 Vendor1 1
2.4 Failure 1 Vendor1 1
3.2 Failure 1 Vendor1 1
7.5 Failure 1 Vendor1 1
11.1 Failure 1 Vendor1 1
28.7 Failure 1 Vendor1 1
34.6 Failure 1 Vendor1 1
38.4 Failure 1 Vendor1 1
45.8 Failure 1 Vendor1 1
52.9 Failure 1 Vendor1 1
58.4 Failure 1 Vendor1 1
66.1 Failure 1 Vendor1 1
68.2 Failure 1 Vendor1 1
94.7 Failure 1 Vendor1 1
128.7 Failure 1 Vendor1 1
143.6 Failure 1 Vendor1 1
162.3 Failure 1 Vendor1 1
183.6 Failure 1 Vendor1 1
245.9 Failure 1 Vendor1 1
331.6 Failure 1 Vendor1 1
365.0 Censored 1020 Vendor1 0
1.4 Failure 1 Vendor2 1
2.6 Failure 1 Vendor2 1
2.7 Failure 1 Vendor2 1
4.7 Failure 1 Vendor2 1
12.8 Failure 1 Vendor2 1
18.2 Failure 1 Vendor2 1
33.5 Failure 1 Vendor2 1
45.6 Failure 1 Vendor2 1
50.0 Failure 1 Vendor2 1
60.3 Failure 1 Vendor2 1
73.6 Failure 1 Vendor2 1
79.1 Failure 1 Vendor2 1
98.1 Failure 1 Vendor2 1
150.6 Failure 1 Vendor2 1
174.1 Failure 1 Vendor2 1
230.5 Failure 1 Vendor2 1
311.2 Failure 1 Vendor2 1
326.4 Failure 1 Vendor2 1
365.0 Censored 1227 Vendor2 0

Notice that the number of censored components in the “Count” column at 365 days are much higher than the number of failures.

We set up the null and alternate hypothesis as follows.

\[ \begin{aligned} &H_0: h_{Vendor 1}(t) = h_{Vendor 2}(t) \quad \text{for all } t \leq \tau, \quad \text{versus} \\ \\ &H_A: h_{Vendor 1}(t) \, \text{is different to} \, h_{Vendor 2}(t) \, \text{for some} \, t \leq \tau. \end{aligned} \]

Here is the Kaplan Meir curve for this scenario.

fit <- survival::survfit(
  survival::Surv(time = Days, event = Status, type = 'right') ~ Vendor,
  data = circuitPack,
  weights = Count,
  conf.type = "log",
  conf.int = 0.95
)

ggsurvplot(fit, data = circuitPack, risk.table = T, ylim = c(0.95,1),  conf.int = T)

Again, the survival probability plot doesn’t suggest much difference between the two curves.

The log rank test using survdiff directly on the dataset is shown below.

survival::survdiff(
  survival::Surv(time = Days, event = Status, type = 'right') ~ Vendor,
  data = circuitPack,
  rho = 0
) ##rho = 0 gives log rank test
## Call:
## survival::survdiff(formula = survival::Surv(time = Days, event = Status, 
##     type = "right") ~ Vendor, data = circuitPack, rho = 0)
## 
##                 N Observed Expected (O-E)^2/E (O-E)^2/V
## Vendor=Vendor1 22       21     20.2    0.0347    0.0724
## Vendor=Vendor2 19       18     18.8    0.0372    0.0724
## 
##  Chisq= 0.1  on 1 degrees of freedom, p= 0.8

The column “N” in the output of survdiff shows 22 for Vendor 1 and 19 for Vendor 2. But the total number of observations are much higher than these values, as shown in the next chunk of code. Also, notice that the p-value is 0.8.

(sum(circuitPack$Count[which(circuitPack$Vendor == "Vendor1")]))
## [1] 1041
(sum(circuitPack$Count[which(circuitPack$Vendor == "Vendor2")]))
## [1] 1245

There are 1041 observations from Vendor 1 and 1245 observations from Vendor. This discrepancy will lead to a big change in the p-value once we modify the data frame like we did in the first example.

count_gt1.index <- which(circuitPack$Count > 1) #identify rows with count greater than 1.
count_adj <- circuitPack$Count[count_gt1.index] - 1

circuitPack.split <- circuitPack[rep(row.names(circuitPack)[count_gt1.index],count_adj),]

circuitPack.new <- rbind(circuitPack,circuitPack.split) %>% dplyr::select(!c("Count")) %>% dplyr::arrange((Vendor))

sum(circuitPack$Count) == dim(circuitPack.new)[1] #check whether sum of counts equals number of rows in the new dataset
## [1] TRUE
knitr::kable(circuitPack.new, caption = "Table 4. Circuit Pack (Modified)", align = rep('c', 4), table.envir = 'table*') %>%
 kableExtra::kable_styling("striped", full_width = T, position = "left") %>%
kableExtra::scroll_box(height = "200px")
## Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
## Use 'xfun::attr2()' instead.
## See help("Deprecated")
## Warning in attr(x, "align"): 'xfun::attr()' is deprecated.
## Use 'xfun::attr2()' instead.
## See help("Deprecated")
Table 4. Circuit Pack (Modified)
Days Censoring Indicator Vendor Status
1.3 Failure Vendor1 1
1.7 Failure Vendor1 1
2.4 Failure Vendor1 1
3.2 Failure Vendor1 1
7.5 Failure Vendor1 1
11.1 Failure Vendor1 1
28.7 Failure Vendor1 1
34.6 Failure Vendor1 1
38.4 Failure Vendor1 1
45.8 Failure Vendor1 1
52.9 Failure Vendor1 1
58.4 Failure Vendor1 1
66.1 Failure Vendor1 1
68.2 Failure Vendor1 1
94.7 Failure Vendor1 1
128.7 Failure Vendor1 1
143.6 Failure Vendor1 1
162.3 Failure Vendor1 1
183.6 Failure Vendor1 1
245.9 Failure Vendor1 1
331.6 Failure Vendor1 1
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
365.0 Censored Vendor1 0
1.4 Failure Vendor2 1
2.6 Failure Vendor2 1
2.7 Failure Vendor2 1
4.7 Failure Vendor2 1
12.8 Failure Vendor2 1
18.2 Failure Vendor2 1
33.5 Failure Vendor2 1
45.6 Failure Vendor2 1
50.0 Failure Vendor2 1
60.3 Failure Vendor2 1
73.6 Failure Vendor2 1
79.1 Failure Vendor2 1
98.1 Failure Vendor2 1
150.6 Failure Vendor2 1
174.1 Failure Vendor2 1
230.5 Failure Vendor2 1
311.2 Failure Vendor2 1
326.4 Failure Vendor2 1
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0
365.0 Censored Vendor2 0

The modified dataframe above has 2286 rows, with one row for each observation.

Next, we use the modified data frame to conduct the long rank test using survdiff.

survival::survdiff(
  survival::Surv(time = Days, event = Status, type = 'right') ~ Vendor,
  data = circuitPack.new,
  rho = 0
) ##rho = 0 gives log rank test
## Call:
## survival::survdiff(formula = survival::Surv(time = Days, event = Status, 
##     type = "right") ~ Vendor, data = circuitPack.new, rho = 0)
## 
##                   N Observed Expected (O-E)^2/E (O-E)^2/V
## Vendor=Vendor1 1041       21     17.7     0.604      1.11
## Vendor=Vendor2 1245       18     21.3     0.503      1.11
## 
##  Chisq= 1.1  on 1 degrees of freedom, p= 0.3

We now have the correct number of observations in the column “N”. Notice that the p-value is now 0.3. Again, we do not have sufficient evidence of difference in the hazard rates at the 5% alpha level. But this p-value is the correct p-value as opposed to the incorrect p-value of 0.7 that we found previously.

One way to verify whether this p-value is indeed correct is to conduct a score test from a Cox proportional hazards model refression. The score test is exactly the same as a log rank test.

cox_fit <- survival::coxph(
  survival::Surv(time = Days, event = Status) ~ Vendor,
  data = circuitPack,
  weights = Count,
  ties = 'efron'
)

summary(cox_fit)
## Call:
## survival::coxph(formula = survival::Surv(time = Days, event = Status) ~ 
##     Vendor, data = circuitPack, weights = Count, ties = "efron")
## 
##   n= 41, number of events= 39 
## 
##                  coef exp(coef) se(coef)      z Pr(>|z|)
## VendorVendor2 -0.3363    0.7144   0.3212 -1.047    0.295
## 
##               exp(coef) exp(-coef) lower .95 upper .95
## VendorVendor2    0.7144        1.4    0.3806     1.341
## 
## Concordance= 0.542  (se = 0.178 )
## Likelihood ratio test= 1.1  on 1 df,   p=0.3
## Wald test            = 1.1  on 1 df,   p=0.3
## Score (logrank) test = 1.11  on 1 df,   p=0.3

The summary shows that the p-value for the score test is 0.3, which, as expected, matches the log rank test p-value.

What does the log rank test within ggsurvplot indicate? Lets find out.

ggsurvplot(
  fit,
  data = circuitPack,
  risk.table = T,
  ylim = c(0.95, 1),
  conf.int = T,
  pval = T,
  pval.method = T,
  pval.coord = c(50, 0.97),
  pval.method.coord = c(50, 0.96)
)

It gives us an incorrect p-value of 0.798. Hence, I do not recommend using this functionality from ggsurvplot. Here is the correct plot with the p-value hardcoded.

ggsurvplot(
  fit,
  data = circuitPack,
  risk.table = T,
  ylim = c(0.95, 1),
  conf.int = T,
  pval = 0.3,
  pval.coord = c(50, 0.97),
  pval.method.coord = c(50, 0.96)
)

These results match my manual calculations9.

Conclusion

In both the cases, we did not find sufficient evidence of a difference in the hazard rates of the two groups at the 5% significance level10.

My biggest takeaway from this exercise is to verify results that I get from packages whenever possible. Open source software like R has democratized data analysis using tools that were previously only available via expensive paid software, but this also comes with its share of risks. It is best to be careful and avoid blindly applying packages without verifying results. A mature package like survival, which is regularly maintained and has been evolving for close to 4 decades is an excellent tool for survival analysis. But when it comes to newer packages that are still evolving, or packages that are not regularly maintained, it is best to manually calculate some results whenever feasible and see if the package produces values that you expect.

Acknowledgements

  1. Most of what I have learnt about time-to-event analysis is from the book Survival Analysis: Techniques for Censored and Truncated Data, Second Edition (John P. Klein and Melvin L. Moescheberger).

  2. The dataset I have used above is used in one of the examples in the book Statistical Methods for Reliability Data, Second Edition (William Q. Meeker, Luis A. Escobar, Francis G. Pascual).

End

I hope you enjoyed reading this blog post! If you have any comments or suggestions or if you find any errors and are keen to help correct the error, please write to me at .


  1. From the book Survival Analysis: Techniques for Censored and Truncated Data, Second Edition (John P. Klein and Melvin L. Moescheberger)↩︎

  2. From the book Statistical Methods for Reliability Data, Second Edition (William Q. Meeker, Luis A. Escobar, Francis G. Pascual)↩︎

  3. Nelson, W. B. (1981). Analysis of performance degradation data from accelerated tests. IEEE Transactions on Reliability 30, 149–155.↩︎

  4. The details and methodology of testing for difference in hazard rates for two or more samples can be found in any good statistics textbooks on survival modeling or reliability data modeling. I recommend either of the two books I have mentioned previously↩︎

  5. If one is more interested in long term reliability and does not want early failures to adversely affect this comparison, then Fleming Harrington weights with the appropriate values of p and q can be used.↩︎

  6. R code for manual calculations can be found in the R markdown file for this article, available here↩︎

  7. Hooper, J. H. and S. J. Amster (1998). Analysis and presentation of reliability data. In H. M. Wadsworth (Ed.), Handbook of Statistical Methods for Engineers and Scientists (Second ed.). McGraw-Hill.↩︎

  8. But it still shows the right “number at risk” in the table below the plot.↩︎

  9. Code for manual calculations can be found in the R markdown file for this article linked here↩︎

  10. The log rank test as well as other non parametric tests with different weights are based on large sample theory, and results from small samples must be interpreted with caution.↩︎

Scroll to Top

Get Our GitHub Code Library For Free